(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(mark(X)) →+ mark(f(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / mark(X)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, c, f, g, proper, top

They will be analysed ascendingly in the following order:
c < active
f < active
g < active
active < top
c < proper
f < proper
g < proper
proper < top

(8) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
c, active, f, g, proper, top

They will be analysed ascendingly in the following order:
c < active
f < active
g < active
active < top
c < proper
f < proper
g < proper
proper < top

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol c.

(10) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
f, active, g, proper, top

They will be analysed ascendingly in the following order:
f < active
g < active
active < top
f < proper
g < proper
proper < top

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

Induction Base:
f(gen_a:mark:ok3_0(+(1, 0)))

Induction Step:
f(gen_a:mark:ok3_0(+(1, +(n9_0, 1)))) →RΩ(1)
mark(f(gen_a:mark:ok3_0(+(1, n9_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
g, active, proper, top

They will be analysed ascendingly in the following order:
g < active
active < top
g < proper
proper < top

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Induction Base:
g(gen_a:mark:ok3_0(+(1, 0)))

Induction Step:
g(gen_a:mark:ok3_0(+(1, +(n318_0, 1)))) →RΩ(1)
mark(g(gen_a:mark:ok3_0(+(1, n318_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(15) Complex Obligation (BEST)

(16) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(18) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(20) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

The following defined symbols remain to be analysed:
top

(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(22) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)
g(gen_a:mark:ok3_0(+(1, n318_0))) → *4_0, rt ∈ Ω(n3180)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: a:mark:ok → a:mark:ok
f :: a:mark:ok → a:mark:ok
a :: a:mark:ok
mark :: a:mark:ok → a:mark:ok
c :: a:mark:ok → a:mark:ok
g :: a:mark:ok → a:mark:ok
proper :: a:mark:ok → a:mark:ok
ok :: a:mark:ok → a:mark:ok
top :: a:mark:ok → top
hole_a:mark:ok1_0 :: a:mark:ok
hole_top2_0 :: top
gen_a:mark:ok3_0 :: Nat → a:mark:ok

Lemmas:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

Generator Equations:
gen_a:mark:ok3_0(0) ⇔ a
gen_a:mark:ok3_0(+(x, 1)) ⇔ mark(gen_a:mark:ok3_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:mark:ok3_0(+(1, n9_0))) → *4_0, rt ∈ Ω(n90)

(30) BOUNDS(n^1, INF)